
15-601035 Issue 11f - (03 December 2009)

TAPILink

IP Office

TAPILink Page 2
15-601035 Issue 11f (03 December 2009)IP Office

© 2009 AVAYA All Rights Reserved.

Notice
While reasonable efforts were made to ensure that the information in this document was complete and accurate at the time of
printing, Avaya Inc. can assume no liability for any errors. Changes and corrections to the information in this document may be
incorporated in future releases.

Documentation Disclaimer
Avaya Inc. is not responsible for any modifications, additions, or deletions to the original published version of this
documentation unless such modifications, additions, or deletions were performed by Avaya.

Link Disclaimer
Avaya Inc. is not responsible for the contents or reliability of any linked Web sites referenced elsewhere within this
Documentation, and Avaya does not necessarily endorse the products, services, or information described or offered within
them. We cannot guarantee that these links will work all of the time and we have no control over the availability of the linked
pages.

License
USE OR INSTALLATION OF THE PRODUCT INDICATES THE END USER’S ACCEPTANCE OF THE TERMS SET FORTH
HEREIN AND THE GENERAL LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE AT
http://support.avaya.com/LicenseInfo/ (“GENERAL LICENSE TERMS”). IF YOU DO NOT WISH TO BE BOUND BY THESE
TERMS, YOU MUST RETURN THE PRODUCT(S) TO THE POINT OF PURCHASE WITHIN TEN (10) DAYS OF DELIVERY
FOR A REFUND OR CREDIT.
Avaya grants End User a license within the scope of the license types described below. The applicable number of licenses and
units of capacity for which the license is granted will be one (1), unless a different number of licenses or units of capacity is
specified in the Documentation or other materials available to End User. “Designated Processor” means a single stand-alone
computing device. “Server” means a Designated Processor that hosts a software application to be accessed by multiple users.
“Software” means the computer programs in object code, originally licensed by Avaya and ultimately utilized by End User,
whether as stand-alone Products or pre-installed on Hardware. “Hardware” means the standard hardware Products, originally
sold by Avaya and ultimately utilized by End User.
License Type(s): Designated System(s) License (DS).
End User may install and use each copy of the Software on only one Designated Processor, unless a different number of
Designated Processors is indicated in the Documentation or other materials available to End User. Avaya may require the
Designated Processor(s) to be identified by type, serial number, feature key, location or other specific designation, or to be
provided by End User to Avaya through electronic means established by Avaya specifically for this purpose.
Copyright
Except where expressly stated otherwise, the Product is protected by copyright and other laws respecting proprietary rights.
Unauthorized reproduction, transfer, and or use can be a criminal, as well as a civil, offense under the applicable law.

Third-Party Components
Certain software programs or portions thereof included in the Product may contain software distributed under third party
agreements (“Third Party Components”), which may contain terms that expand or limit rights to use certain portions of the
Product (“Third Party Terms”). Information identifying Third Party Components and the Third Party Terms that apply to them is
available on Avaya’s web site at: http://support.avaya.com/ThirdPartyLicense/

Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call Technical Service
Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. Suspected security
vulnerabilities with Avaya Products should be reported to Avaya by sending mail to: securityalerts@avaya.com.
For additional support telephone numbers, see the Avaya Support web site (http://www.avaya.com/support).

Trademarks
Avaya and the Avaya logo are registered trademarks of Avaya Inc. in the United States of America and other jurisdictions.
 Unless otherwise provided in this document, marks identified by “®,” “™” and “SM” are registered marks, trademarks and
service marks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners.

Documentation information
For the most current versions of documentation, go to the Avaya Support web site (http://www.avaya.com/support) or the IP
Office Knowledge Base (http://marketingtools.avaya.com/knowledgebase/).

Avaya Support
Avaya provides a telephone number for you to use to report problems or to ask questions about your contact center. The
support telephone number is 1 800 628 2888 in the United States. For additional support telephone numbers, see the Avaya
Web site: http://www.avaya.com/support.

TAPILink Page 3
15-601035 Issue 11f (03 December 2009)IP Office

Contents

Contents
IP Office TAPI Link1.

... 71.1 Installing the TAPILink and Wave Drivers

... 7
1.2 Installing the CTI TAPI Linkpro License and Wave
Licenses

... 91.3 Configuring the TAPI Driver

... 111.4 Configuring Your IP Office for TAPI

... 111.5 Communication Loss and Recovery

... 111.6 TAPI Only Short Codes

TAPI 2.x Reference2.
... 162.1 TAPI Functions

.. 172.1.1 lineAddToConference

.. 172.1.2 lineAnswer

.. 172.1.3 lineBlindTransfer

.. 172.1.4 lineCompleteTransfer

.. 182.1.5 lineConfigDialog

.. 182.1.6 lineClose

.. 182.1.7 lineDeallocateCall

.. 192.1.8 lineDevSpecific

.. 212.1.9 lineDial

.. 212.1.10 lineDrop

.. 212.1.11 lineGenerateDigits

.. 212.1.12 lineGenerateTone

.. 222.1.13 lineGetAddressCaps

.. 222.1.14 lineGetAddressID

.. 222.1.15 lineGetAddressStatus

.. 222.1.16 lineGetAppPriority

.. 232.1.17 lineGetCallInfo

.. 232.1.18 lineGetCallStatus

.. 232.1.19 lineGetDevCaps

.. 232.1.20 lineGetID

.. 242.1.21 lineGetLineDevStatus

.. 262.1.22 lineHandoff

.. 262.1.23 lineHold

.. 262.1.24 lineInitializeEx

.. 262.1.25 lineMakeCall

.. 272.1.26 lineMonitorDigits

.. 272.1.27 lineMonitorTone

.. 272.1.28 lineNegotiateAPIVersion

.. 282.1.29 lineOpen

.. 282.1.30 linePark

.. 282.1.31 lineRedirect

.. 292.1.32 lineRemoveFromConference

.. 292.1.33 lineSetAppPriority

.. 292.1.34 lineSetAppSpecific

.. 292.1.35 lineSetCallPrivilege

.. 302.1.36 lineSetStatusMessages

.. 302.1.37 lineSetupTransfer

.. 302.1.38 lineShutdown

.. 302.1.39 lineSwapHold

.. 312.1.40 lineUnhold

.. 312.1.41 lineUnpark

... 322.2 TAPI Structures

.. 322.2.1 LINEADDRESSCAPS

.. 352.2.2 LINEADDRESSSTATUS

.. 362.2.3 LINECALLINFO

.. 372.2.4 LINECALLPARAMS

.. 382.2.5 LINECALLSTATUS

.. 392.2.6 LINEDEVCAPS

... 412.3 TAPI Events (Messages)

TAPI 3.0 Reference3.
... 443.1 TAPI

.. 443.1.1 ITTAPI

... 453.2 Address

.. 453.2.1 ITAddress

.. 463.2.2 IEnumAddress

.. 463.2.3 ITMediaSupport

... 463.3 Terminal

... 473.4 Call

.. 473.4.1 ITCallInfo

.. 483.4.2 ITBasicCallControl

.. 503.4.3 ITCallStateEvent

.. 503.4.4 ITCallNotificationEvent

.. 503.4.5 ITCallInfoChangeEvent

... 503.5 Call Hub

TAPI 3 Enumerated Types4.
... 524.1 CALL_STATE

... 524.2 CALLINFO_STRING

... 534.3 DISCONNECT_CODE

... 534.4 CALL_STATE_EVENT_CAUSE

The IP Office Media Service Provider5.
... 565.1 Using The MSP

... 565.2 Using the Device Specific Interfaces

... 575.3 ITACDAgent

... 575.4 ITGroup

... 585.5 ITDivert

... 595.6 ITPlay

... 595.7 IPOfficePrivateEvents

... 595.8 Using the Media Streaming Capabilities of the MSP

...61Index

TAPILink Page 5
15-601035 Issue 11f (03 December 2009)IP Office

IP Office TAPI Link

Chapter 1.

TAPILink Page 7
15-601035 Issue 11f (03 December 2009)IP Office

IP Office TAPI Link:

1. IP Office TAPI Link
The IP Office CTI Link is available in Lite and Pro versions, which provide run-time interfaces for applications to use. The
Software Development Kit (SDK) provides documentation on both Lite and Pro interfaces for software developers.

Both the Lite and Pro offerings are the same program. The additional functionality provided by IP Office CTI Link Pro is
enabled when the CTI Link Pro licence key is installed. Refer to the IP Office CTI Link Installation Manual for details.

This document provides information to assist a developer to implement an application that uses the IP Office TAPI Service
Provider. It also assumes the developer is already familiar with TAPI. It is recommended that the reader of this document
has access to the Microsoft Developer Network (MSDN) Library, which provides a complete TAPI reference.

IP Office TAPI Driver
The architecture of Windows allows developers to implement applications using standard Application Programming
Interfaces (API) regardless of telephony equipment being used. Telephony equipment manufacturers provide telephony
drivers, called Telephony Service Providers (TSP), that are installed on Windows. These TSPs provide the link between
TAPI and the telephony equipment.

The TAPI driver for IP Office supports all TAPI versions from 2.0 to 3.0.

Disclaimer
Please note that although Avaya intend that releases of the IP Office TAPI Driver will provide backwards compatibility
with earlier versions of the IP Office TAPI Driver, in terms of the feature set provided, Avaya cannot guarantee that the
behaviour of IP Office will remain unchanged. Due to improvements in IP Office, the precise sequence, timing and
content of TAPI events are likely to change. It is recommended that developers use an event driven programming model
to make their applications resilient to such changes.

References
The following are recommended reading:

· MSDN/Platform SDK

· Windows Telephony Programming (TAPI 1.x and 2.x)

· CTI Link Installation Manual

IP Office 4.1 TAPI Changes
IP Office 4.1 introduces a number of changes to the IP Office TAPI interfaces.

· GetLineDevStatus
This option is now includes additional fields for reporting user rights settings.

· If you are using the TAPI interface you may need to increase the size of message receive buffers for the lineDevStatus
message to allow for the new fields. The required increase in length is 16*(2+ number of User rights group defined on
the IP Office).

· TAPI Specific Short Code Features
The IP Office now support a number of short code features that are only invokable via the TAPI interface. The
features are Set User Rights and Set User Priority.

1.1 Installing the TAPILink and Wave Drivers
The IP Office TAPI Service Provider and Wave Driver are installed from the IP Office User CD.

Refer to the CTI Link Installation Manual for details.

1.2 Installing the CTI TAPI Linkpro License and Wave Licenses
You do not need a license in order to use the TAPI driver, but the license provides the following additional functionality:

· Third Party mode

· ACD Queue monitoring

· lineDevSpecific function enabled

24

11

TAPILink Page 8
15-601035 Issue 11f (03 December 2009)IP Office

To use the Wave functionality you need to install a Wave User's Licence for each Wave user, in addition to the CTI Link
Pro license.

TAPILink Page 9
15-601035 Issue 11f (03 December 2009)IP Office

IP Office TAPI Link: Installing the CTI TAPI Linkpro License and Wave Licenses

1.3 Configuring the TAPI Driver
TAPI Service Providers are configured using a Windows Control Panel applet. The name of the applet is not the same
across all versions of Windows. The following table indicates the name of the applet and the tab that must be selected
within the applet:

Windows Control Panel Applet Tab

XP Pro Network and Internet Connections, Phone and Modem Options Advanced

2000 Phone and Modem Options Advanced

Run the appropriate applet for your version of Windows and select the tab indicated above. You will be presented with
the list of TAPI Service Providers that you have installed. The IP Office TAPI Service Provider will be in the list of installed
TAPI Service Providers. Select Avaya IP Office TAPI Service Provider and press Configure. You will be presented with the
Avaya TAPI Configuration menu screen.

The IP Office TAPI Service Provider can operate in Single User mode or Third Party mode. A license must be purchased to
enable the Third Party mode. Note that the unlicensed version will not prevent you from selecting this option but it will
not work.

Single User mode means that the TAPI application can control and/or monitor a single telephony device. Third Party
mode means that the TAPI application can control and/or monitor all telephony devices on a particular IP Office Control
Unit.

· Note
On some versions of Windows it will be necessary to reboot the PC (or just restart the telephony service) in
order for configuration changes to take effect.

Single User Mode
Enter the IP address of the IP Office unit in the box labeled Switch IP Address. Select the Single User option. Enter the
user name and password for the extension that is to be monitored and/or controlled by TAPI. Normally, the user name
will be the name of a person associated with a physical telephone extension.

Third Party Mode
Enter the IP address of the IP Office unit in the box labeled Switch IP Address. Select the Third Party option. Enter
the system password of the IP Office. By default, Third Party mode will provide a TAPI line for every physical extension
attached to the IP Office. The check boxes associated with Third Party mode enable additional entities to be monitored
and/or controlled by TAPI.

WAV Users
If a user has a user name that begins with "TAPI:" it is a WAV user. The IP Office switch will attempt to stream audio to
WAV users when they are involved in calls.

This audio streaming requires the IP Office wave driver to be installed on the PC and requires a wave driver licence
instance per user. If the wave driver is not installed, you may still have the WAV Users tick box checked and will still
receive WAV user events without the need for a licence.

During use the TAPI WAV audio stream uses an IP Office data channel taken from the same pool of data channels as used
for voicemail ports. The maximum number of data channels available for simultaneous voicemail and TAPI WAV calls
depends on the IP Office Control Unit type;

Control Unit Data
Channels

Channels usable for
Voicemail/TAPI WAV

Small Office Edition – 10

IP403 18 10

IP406 V1 24 20

IP406 V2 50 20

IP412 108 30

IP500 48 40

IP500 V2 48 40

TAPILink Page 10
15-601035 Issue 11f (03 December 2009)IP Office

ACD Queues
The IP Office can be configured to queue incoming calls that are being presented to a group of internal users. For
example, if your IP Office was configured with a group of call center agents, you would want to queue an incoming call
until an agent becomes available to take the call.

Checking the ACD Queues check box provides lines to monitor and/or control the queue of calls against a group.

TAPILink Page 11
15-601035 Issue 11f (03 December 2009)IP Office

IP Office TAPI Link: Configuring the TAPI Driver

1.4 Configuring Your IP Office for TAPI
This section describes the configuration of the IP Office using the Manager application. If your application monitors
telephones but does not control them, then there is no configuration necessary.

There are two ways in which you can use TAPI with IP Office:

· If your application controls telephones, you should configure all users that will be controlled as an off-hook station.
This will cause the user's phone to return to the idle state when a call is hung up using TAPI. Without this option set,
the phone will remain in a disconnected state until the phone is hung up manually. The off-hook station check box
can be found on the Telephony tab of the User's setting in Manager.

· If you require a special user that will handle media streaming (such as an auto attendant), create a new user with a
name that begins with "TAPI:". This will be a WAV user. The user's number should be in a range that does not
conflict with any existing phone numbers or groups.

1.5 Communication Loss and Recovery
It is advisable to close all TAPI applications before resetting the switch. This allows the Telephony Service Provider (TSP)
to gracefully close all open lines and ensures that the switch and all connected TSPs have a consistent state. In the event
of an unexpected loss of communication (the switch is accidentally powered down or a network cable is accidentally
unplugged), the TSP will detect that it is no longer connected to the switch.

During this time, any calls to TAPI functions that require the TSP to communicate with the switch, will be rejected. The
time delay between communication being lost and the TSP detecting the loss depends on TCP settings on the host
machine and internal timing in the TSP. The delay could be up to two minutes.

After the TSP has detected that it has lost communication with the switch, it will attempt to re-establish a connection.
When the connection is re-established the service provider will usually be able to recover the open lines/addresses. This
is the case even if the loss of communication was due to the switch rebooting.

The way in which the loss of communication appears to the TAPI application depends on the version of TAPI being used.
This is described below.

TAPI 2
When the TSP loses its connection to IP Office, a LINEDEVSTATE_OUTOFSERVICE message will be sent on all open lines.
When communication is re-established, a LINEDEVSTATE_INSERVICE message will be sent for each TAPI line recovered.

TAPI 3
When the TSP loses its connection to IP Office an ITAddressEvent is generated for each address that has registered for
such events. These events will indicate that the addresses state has changed. The state will become AS_OUTOFSERVICE.
When the TSP re-establishes its connection to IP Office no events are generated. However, once communication has been
re-established, all open TAPI 3 Addresses will be recovered.

1.6 TAPI Only Short Codes
The following TAPI only short code function were added for IP Office 4.1 and higher.

Set User Rights Group (short code feature# 196)
First character is an integer (not ASCII of integer) which selects the User restrictions group that will be changed:

1. Set the active User Rights Group

This option will set either the Working Hours or Out of Hours User Rights Group depending which is currently active.

2.Set the Working Hours User Rights Group

3.Set the Out of Hours User Rights Group

The subsequent characters are the null terminated name of the selected user rights group that you wish to set the above
selection to or an empty string to clear it.

void TapiLine::SetUserRightsGroup(CString& selstring,
 SetURGOption setoption)
{
 int len=4+selstring.GetLength();
 TCHAR buffer[100];
 buffer[0] = 9;
 buffer[1] = 196;
 buffer[2]=setoption;
 strlcpy(&buffer[3],(LPCTSTR)selstring,16);

TAPILink Page 12
15-601035 Issue 11f (03 December 2009)IP Office

 HRESULT tr = ::lineDevSpecific(m_hLine,0,NULL,buffer,len);
}

Set User Priority (short code feature# 197)
This requires two fields:

The first field is the extension of the user for which the priority is to be set, terminated with a colon “:”.

The second field is a single character representing the integer user priority level ‘1’ to ‘5’ inclusive.

Note user priority can be used to determine which ARS (Alternate Route Selection) groups a user is permitted to use and
thus can determine levels of out going call barring.

void TapiLine::SetUserPriority(TCHAR priority)
{
 TCHAR buffer[100];
 TCHAR* p=&buffer[2];
 buffer[0] = 9;
 buffer[1] = 197;
 itoa(m_extension,&buffer[2],10);
 int len=strlen(buffer);
 p=&buffer[len];
 *p=':';
 *p++;
 *p=priority;
 p++;
 *p=0;
 len=(int)(p-buffer+1);
 HRESULT tr = ::lineDevSpecific(m_hLine,0,NULL,buffer,len);
}

TAPILink Page 13
15-601035 Issue 11f (03 December 2009)IP Office

IP Office TAPI Link: TAPI Only Short Codes

TAPILink Page 15
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference

Chapter 2.

TAPILink Page 16
15-601035 Issue 11f (03 December 2009)IP Office

2. TAPI 2.x Reference
2.1 TAPI Functions
This section describes each of the TAPI 2.x functions supported by the IP Office TAPI driver. It describes any particular
behaviour or limitations of the functions when used with IP Office.

· lineAddToConference

· lineAnswer

· lineBlindTransfer

· lineCompleteTransfer

· lineConfigDialog

· lineClose

· lineDeallocateCall

· lineDevSpecific

· lineDial

· lineDrop

· lineGenerateDigits

· lineGenerateTone

· lineGetAddressCaps

· lineGetAddressID

· lineGetAddressStatus

· lineGetAppPriority

· lineGetCallInfo

· lineGetCallStatus

· lineGetDevCaps

· lineGetID

· lineGetLineDevStatus

· lineHandoff

· lineHold

· lineInitializeEx

· lineMakeCall

· lineMonitorDigits

· lineMonitorTone

· lineNegotiateAPIVersion

· lineOpen

· linePark

· lineRedirect

· lineRemoveFromConference

· lineSetAppPriority

· lineSetAppSpecific

· lineSetCallPrivilege

· lineSetStatusMessages

· lineSetupTransfer

· lineShutdown

· lineSwapHold

· lineUnhold

· lineUnpark

17

17

17

17

18

18

18

19

21

21

21

21

22

22

22

22

23

23

23

23

24

26

26

26

26

27

27

27

28

28

28

29

29

29

29

30

30

30

30

31

31

TAPILink Page 17
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.1 lineAddToConference
Adds the call to the conference.

LONG
WINAPI
lineAddToConference(
HCALL hConfCall,
HCALL hConsultCall
);

2.1.2 lineAnswer
Answer a call that is being offered to the application.

LONG
WINAPI
lineAnswer(
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize
);

Note

· "UserUserInfo" is not supported and will be ignored.

2.1.3 lineBlindTransfer
This function can be used to transfer an active call to a third party. The country code is ignored.

LONG
WINAPI
lineBlindTransfer(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode
);

2.1.4 lineCompleteTransfer
This function can be used to complete a transfer or complete setting up a conference call. This function is supposed to
return a call id to the conference but it always returns zero.

LONG
WINAPI
lineCompleteTransfer(
HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode
);

TAPILink Page 18
15-601035 Issue 11f (03 December 2009)IP Office

2.1.5 lineConfigDialog
Displays the same TAPI Service Provider configuration dialog that appears in Control Panel/Phone and Modem options (or
Telephony). Parameter lpszDeviceClass is ignored.

LONG
WINAPI
lineConfigDialog(
DWORD dwDeviceID,
HWND hwndOwner,
LPCSTR lpszDeviceClass
);

2.1.6 lineClose
Closes a line. Call this when you no longer want to make, receive or monitor calls on a line.

LONG
WINAPI
lineClose(
HLINE hLine
);

2.1.7 lineDeallocateCall
Deallocate resources associated with a call. This should be called once a call is in the idle state.

LONG
WINAPI
lineDeallocateCall(
HCALL hCall
);

TAPILink Page 19
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.8 lineDevSpecific
The TSPI allows for extended functionality through the the lineDevSpecific function.

Note that this is only available in the licensed version of the TAPI driver.

TAPI's lineDevSpecific function takes a buffer and passes that buffer, unmodified through to the TSP where it is
interpreted as device specific commands. The types of commands are described in the following paragraphs:

LONG
WINAPI
lineDevSpecific(
HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize
);

2.1.8.1 The Login Protocol

To log an ACD agent onto the line being monitored, set the first byte in the buffer to 8. The following bytes should be a
character string, describing the extension that is logging on. So, consider the following buffer, used to log agent 218 onto
the line on which we are calling lineDevSpecific: -

unsigned char buf[6];
int len = 6;
buf[0] = 8; // Constant that means Login
buf[1] = '2';
buf[2] = '1';
buf[3] = '8';
buf[4] = 0; // Don't forget the null terminator

2.1.8.2 Logging Off

Log off can be done by passing the following buffer to the DevSpecific function:

unsigned char buf[3];
int len = 3;
buf[0] = 9; // Constant that means Shortcode
buf[1] = 47; // Constant that means Log off
buf[2] = 0; // Don't forget the null terminator

2.1.8.3 Divert Destination

To set the target for diverted calls, send 9 in the first byte, 6 in the second and the following bytes should be a character
string representing the divert destination extension. For example, to set the divert destination to extension 236, send the
following buffer:

unsigned char buf[6];
int len = 6;
buf[0] = 9; // The first two bytes are devspecific constants
buf[1] = 6;
buf[2] = '2';
buf[3] = '3';
buf[4] = '6';
buf[5] = 0; // Don't forget the null terminator

2.1.8.4 Message Waiting Lamp

Some phones have lights that are lit when the user has voicemail messages waiting for them. The number of messages
waiting can be controlled by a devspecific command. The IP Office server or other IP Office applications may also control
the message waiting lamp. Zero messages will extinguish the lamp. One or more messages will light the lamp. Send the
following buffer to lineDevSpecific:

unsigned char buf[21];
int len = 21;
buf[0] = 9; // Shortcode
buf[1] = 73; // Set MWL
sprintf(&(buffer[2]), ";Mailbox Msgs=%d", num);
// Where num is the number of messages

TAPILink Page 20
15-601035 Issue 11f (03 December 2009)IP Office

2.1.8.5 Forward (Divert) Settings

The following constants will help with switching divert features on and off:

const unsigned char ForwardAllOn = 0;
const unsigned char ForwardAllOff = 1;
const unsigned char ForwardBusyOn = 2;
const unsigned char ForwardBusyOff = 3;
const unsigned char ForwardNoAnswerOn = 4;
const unsigned char ForwardNoAnswerOff = 5;
const unsigned char DoNotDisturbOn = 7;
const unsigned char DoNotDisturbOff = 8;

A buffer that uses any of these constants should be three bytes in length and should begin with a 9. For example, the
following code will switch the line to 'Do Not Disturb':

unsigned char buf[3];
int len = 3;
buf[0] = 9;
buf[1] = DoNotDisturbOn;
buf[2] = 0;

2.1.8.6 Group Enable and Disable

You can only enable and disable a users membership of the groups to which they belong (as configured in IP Office
Manager).

Send the following buffer to enable* the user's membership in the group with extension groupnum.

unsigned char buf[10];
int len = 10;
buf[0] = 9;
buf[1] = 76;
sprintf((char*)&buf[2], "%d", groupnum);

Send the following buffer to disable the user's membership in the group with extension groupnum.

unsigned char buf[10];
int len = 10;
buf[0] = 9;
buf[1] = 77;
sprintf((char*)&buf[2], "%d", groupnum);

In both cases (disabling and enabling group membership), you may elect to disable or enable all group membership by
omitting the group number and placing a zero in its place (ie. buf[2] = 0).

*Note: The enable function toggles and therefore can be used to both enable and disable membership.

2.1.8.7 Intrude

Send the following buffer to intrude upon another callers call. The call party to be intruded upon is identified by the
integer extnnum.

unsigned char buf[10];
int len = 10;
buf[0] = 9; // Shortcode
buf[1] = 83; // Intrude
sprintf((char*)&buf[2], "%d", extnnum);

2.1.8.8 Listen

Send the following buffer to listen to another callers call. The call party to be listened to is identified by the integer
extnnum.

unsigned char buf[10];
int len = 10;
buf[0] = 9; // Shortcode
buf[1] = 100; // Listen
sprintf((char*)&buf[2], "%d", extnnum);

TAPILink Page 21
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.9 lineDial
This function is used to dial a number on an existing call. It can be used as part of a supervised transfer (see
lineSetupTransfer). Country code is ignored.

LONG
WINAPI
lineDial(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode
);

2.1.10 lineDrop
Hangs up a call. UserUserInfo is not supported and will be ignored.

LONG
WINAPI
lineDrop(
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize
);

2.1.11 lineGenerateDigits
Call this function to generate DTMF digits on the call. The user does not need to be a WAV user and the wave driver does
not need to be involved in the call. A LINE_GENERATE message will be sent to the application when the generation is
finished. The only dwDigitMode supported is LINEDIGITMODE_DTMF.

LONG
WINAPI
lineGenerateDigits(
HCALL hCall,
DWORD dwDigitMode,
LPCSTR lpszDigits,
DWORD dwDuration
);

2.1.12 lineGenerateTone
This function can be used to generate a beep on the line. The line must be a WAV user and the wave driver must be
involved in the call. The only supported value for dwToneMode is LINETONEMODE_BEEP. As we do not support custom
tones, dwNumTones should be zero.

LONG
WINAPI
lineGenerateTone(
HCALL hCall,
DWORD dwToneMode,
DWORD dwDuration,
DWORD dwNumTones,
LPLINEGENERATETONE const lpTones
);

30

TAPILink Page 22
15-601035 Issue 11f (03 December 2009)IP Office

2.1.13 lineGetAddressCaps
Retrieves the telephony capabilities of a particular address for a particular line. The capabilities are returned in the
LINEADDRESSCAPS structure. See LINEADDRESSCAPS in the TAPI structures section for details.

IP Office lines always have a single address.

LONG
WINAPI
lineGetAddressCaps(
HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAddressID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEADDRESSCAPS lpAddressCaps
);

2.1.14 lineGetAddressID
This function is used to map a phone number (address) assigned to a line device back to its dwAddressID in the range
zero to the number of addresses minus one returned in the line's device capabilities (LINEDEVCAPS). Given that
dwNumAddresses in LINEDEVCAPS is 1, this function will always return 0 in the DWORD pointed to by lpdwAddressID.

LONG
WINAPI
lineGetAddressID(
HLINE hLine,
LPDWORD lpdwAddressID,
DWORD dwAddressMode,
LPCSTR lpsAddress,
DWORD dwSize
);

2.1.15 lineGetAddressStatus
This function allows an application to query the specified address for its current status. See LINEADDRESSSTATUS in the
TAPI structures section for details.

LONG
WINAPI
lineGetAddressStatus(
HLINE hLine,
DWORD dwAddressID,
LPLINEADDRESSSTATUS lpAddressStatus
);

2.1.16 lineGetAppPriority
Retrieve your applications priority.

LONG
WINAPI
lineGetAppPriority(
LPCSTR lpszAppFilename,
DWORD dwMediaMode,
LPLINEEXTENSIONID lpExtensionID,
DWORD dwRequestMode,
LPVARSTRING lpExtensionName,
LPDWORD lpdwPriority
);

TAPILink Page 23
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.17 lineGetCallInfo
Obtain fixed information about the specified call. See LINECALLINFO structure for details.

LONG
WINAPI
lineGetCallInfo(
HCALL hCall,
LPLINECALLINFO lpCallInfo
);

2.1.18 lineGetCallStatus
This function retrieves a LINECALLSTATUS structure relating to an existing call. See LINECALLSTATUS in the TAPI
structures section for details.

LONG
WINAPI
lineGetCallStatus(
HCALL hCall,
LPLINECALLSTATUS lpCallStatus
);

2.1.19 lineGetDevCaps
Call this function to retrieve the LINEDEVCAPS structure. See LINEDEVCAPS in the TAPI structures section for details.

LONG
WINAPI
lineGetDevCaps(
HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEDEVCAPS lpLineDevCaps
);

2.1.20 lineGetID
Get the ID for a line when dwSelect is LINECALLSELECT_LINE.

LONG
WINAPI
lineGetID(
HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
DWORD dwSelect,
LPVARSTRING lpDeviceID,
LPCSTR lpszDeviceClass
);

TAPILink Page 24
15-601035 Issue 11f (03 December 2009)IP Office

2.1.21 lineGetLineDevStatus
The lineGetLineDevStatus returns a device specific buffer. The devspecific buffer contains the following information:

LONG
WINAPI
lineGetLineDevStatus(
HLINE hLine,
LPLINEDEVSTATUS lpLineDevStatus
);

Note: IP Office 4.1+ includes a number of additional fields (see the table below). If you are using the TAPI interface you
may need to increase the size of message receive buffers for the lineDevStatus message to allow for the new fields. The
required increase in length is 16*(2+ number of User rights group defined on the IP Office).

Byte Contains Comment

0..n Phone Extension This is the line number being monitored, as a character string (eg. "217")

n+1 0 Null terminator for the string above.

n+2 Forward on busy 1 if the phone is set to forward on busy, 0 otherwise.

n+3 Forward on no answer 1 if the phone is set to forward on no answer, 0 otherwise.

n+4 Forward unconditional 1 if the phone is set to forward all.

n+5 Forward hunt group flag 1 if the phone is set to forward hunt group calls.

n+6 Do Not Disturb 1 if the phone is set to DND

n+7 Outgoing call bar flag 1 if the phone is barred from making external calls

n+8 Call waiting on flag 1 if call waiting is enabled for this phone

n+9 Voicemail on flag 1 if voicemail is enabled for this phone

n+10 Voicemail ring-back flag 1 if voicemail ringback is enabled for this phone

n+11 Number of read
voicemail messages

The number of read messages.

n+12 Number of unread
voicemail messages

The number of voicemail messages waiting for the user.

n+13 Outside call sequence
number

Type of ring for external calls.

n+14 Inside call sequence
number

Type of ring for internal calls.

n+15 Ring back sequence
number

Type of ring for ringback calls.

n+16 No answer timeout
period

Number of seconds the phone will ring before following the no answer action, e.g.
forward on no answer, divert to voicemail.

n+17 Wrap up time period Number of seconds the phone will remain unable to accept calls following a call.

n+18 Can intrude flag 1 if this phone can intrude upon calls.

n+19 Cannot be intruded upon
flag

1 if this phone cannot be intruded upon.

n+20 X directory flag 1 if this user does not appear in the internal directory.

n+21 Force login flag in the logged-out state on power up and therefore a user must log in.

n+22 Forced account code flag 1 if this phone is forced to provide a valid account code when making external calls.

n+23 Login code flag 1 if this user has a login code configured.

n+24 System phone flag 1 if this is a system phone

n+25 Absent message id The id of the absent message

n+26 Absent message set flag 1 if the absent message with the id in the previous field is displayed on the phone.

n+27 Voicemail email mode 1 if voicemail email mode is enabled

n+28..
m

Extn The user extension, which may be different to the phone extension.

m+1 0 Null terminator for Extn string above.

m+2..p locale The locale of the user.

p+1 0 Null terminator for locale

p+2..q Forward destination The number that this phone is set to divert to

q+1 0 Null terminator for destination above.

q+2..r Follow me number All calls are redirected to this number.

r+1 0

r+2..s Absent text The absent text defined for this phone.

TAPILink Page 25
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

Byte Contains Comment

s+1 0

s+2..t Do not disturb exception
list

A list of numbers that are permitted to ring the phone while it is in the Do Not Disturb
state. Each number is a null-terminated string. The last number in the list is
terminated by two nulls (field "t+1" represents the second of these two nulls). If the
list is empty then the data will contain just a single null (represented by t+1).

t+1 0

t+2..u Forward on busy number The number that calls will divert to when this phone is busy.

u+1 0

u+2 User's priority This priority will be associated with all calls made by this user.

u+3 Group membership This byte contains the number of groups that the user is currently enabled in.

u+4 Groups out of time Number of groups that the user is a member of that are currently outside their time
profile

u+5 Disabled groups Number of groups the user is currently disabled from

u+6 Groups out of service Number of groups that the user is a member of that are currently out of service

u+7 Night service groups Number of groups that the user is a member of that are currently on night service

Additional fields available for IP Office 4.1+.

v+8..v Working Hours User
Rights Group Name

Default = Blank (No rights restrictions),
This field allows selection of user rights which may set and lock some user settings. If
a Working Hours Time Profile has been selected, the Working Hours User Rights are
only applied during the times defined by that time profile, otherwise they are applied
at all times.

(maximum length 15 characters)

v+1 0 Null termination for working hours group name

V+2 Out of Hours User Rights
Group Name

Default = Blank (No rights restrictions),
This field allows selection of alternate user rights that are used outside the times
defined by the user's Working Hours Time Profile

(maximum length 15 characters)

v…w 0 Null termination for working hours group name

w+1..x User Restriction Name
List

A list of all User Restriction Group Names defined on the IP Office

Each name is a maximum of 15 characters long and is null terminated.

This is provided to allow the TAPI application to present the list of valid values to
which the previous two fields can be set (e.g. in a Combo Box control).

x+1 0 Null termination (empty string) termination of name list.

TAPILink Page 26
15-601035 Issue 11f (03 December 2009)IP Office

2.1.22 lineHandoff
The lineHandoff function gives ownership of the specified call to another application.

LONG
WINAPI
lineHandoff(
HCALL hCall,
LPCSTR lpszFileName,
DWORD dwMediaMode
);

2.1.23 lineHold
This function holds an active call.

LONG
WINAPI
lineHold(
HCALL hCall
);

2.1.24 lineInitializeEx
This is the first TAPI function that should be called to initialise TAPI. The lpdwAPIVersion parameter should be set to at
least 0x00020000.

LONG
WINAPI
lineInitializeEx(
LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);

2.1.25 lineMakeCall
This function makes a call. See section on call parameters at the end of the TAPI functions chapter.

LONG
WINAPI
lineMakeCall(
HLINE hLine,
LPHCALL lphCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode,
LPLINECALLPARAMS const lpCallParams
);

TAPILink Page 27
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.26 lineMonitorDigits
Call this function to enable the detection of DTMF digits. This function only works when the IP Office wave driver is
involved in the call and the user is a WAV user (see the "WAV users" section). Detection is done by analysing media
samples in the WAV driver. When a DTMF tone is detected a LINE_MONITORDIGITS message is sent to the application.
dwDigitModes can be LINEDIGITMODE_DTMF and/or LINEDIGITMODE_DTMFEND. Call lineMonitorDigits with a
dwDigitMode of zero to cancel DTMF digit detection.

LONG
WINAPI
lineMonitorDigits(
HCALL hCall,
DWORD dwDigitModes
);

2.1.27 lineMonitorTone
This function, like the one above, requires that the wave driver be involved in the call. Furthermore, it can only be used
to detect silence. The frequencies in the LINEMONITORTONE structure pointed to by lpToneList must all be zero. If silence
is detected, a LINE_MONITORTONE message is sent to the application. Call lineMonitorTone with lpToneList set to NULL
to cancel silence detection.

LONG
WINAPI
lineMonitorTone(
HCALL hCall,
LPLINEMONITORTONE const lpToneList,
DWORD dwNumEntries
);

2.1.28 lineNegotiateAPIVersion
This function should be called immediately after lineInitializeEx to ensure that correct TAPI notifications are sent to your
application. It must be called for every line that your application uses.

LONG
WINAPI
lineNegotiateAPIVersion(
HLINEAPP hLineApp,
DWORD dwDeviceID,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPLINEEXTENSIONID lpExtensionID
);

TAPILink Page 28
15-601035 Issue 11f (03 December 2009)IP Office

2.1.29 lineOpen
This function opens a line device.

dwMediaModes should be set to LINEMEDIAMODE_INTERACTIVEVOICE for ISDN / T1 and LINEMEDIAMODE_UNKNOWN
for Analogue trunks. You can specify both to handle calls from both trunk types.

LONG
WINAPI
lineOpen(
HLINEAPP hLineApp,
DWORD dwDeviceID,
LPHLINE lphLine,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivileges,
DWORD dwMediaModes,
LPLINECALLPARAMS const lpCallParams
);

Note

· If an attempt is made to open a line that is associated with a Wave user and no there is no Wave User license
installed in IP Office, lineOpen will return LINEERR_RESOURCEUNAVAIL. For an explanation of Wave Users, see WAV
Users.

2.1.30 linePark
This function parks a call. Only park mode LINEPARKMODE_DIRECTED is supported. The park address may be any
alphanumeric string, however, only numeric digits can be entered from a telephone, so you may want to restrict your
park addresses to numeric strings. The four default park addresses that appear in Phone Manager and eConsole are 1, 2,
3 and 4. You should use these numbers if you want parked calls to be unparked using these applications using the default
configuration.

LONG
WINAPI
linePark(
HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress
);

2.1.31 lineRedirect
The lineRedirect function redirects the specified offering call to the specified destination address. Country code is ignored.

LONG
WINAPI
lineRedirect(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode
);

TAPILink Page 29
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.32 lineRemoveFromConference
Removes the call from the conference.

LONG
WINAPI
lineRemoveFromConference(
HCALL hCall
);

2.1.33 lineSetAppPriority
Call this to indicate your applications priority.

LONG
WINAPI
lineSetAppPriority(
LPCSTR lpszAppFilename,
DWORD dwMediaMode,
LPLINEEXTENSIONID lpExtensionID,
DWORD dwRequestMode,
LPCSTR lpszExtensionName,
DWORD dwPriority
);

2.1.34 lineSetAppSpecific
This function enables an application to set the application-specific field of the specified call's call-information record.

LONG
WINAPI
lineSetAppSpecific(
HCALL hCall,
DWORD dwAppSpecific
);

2.1.35 lineSetCallPrivilege
Call this to change your applications ownership rights to a particular call.

LONG
WINAPI
lineSetCallPrivilege(
HCALL hCall,
DWORD dwCallPrivilege
);

TAPILink Page 30
15-601035 Issue 11f (03 December 2009)IP Office

2.1.36 lineSetStatusMessages
This function enables the application to state which notification messages it requires. Typically, dwLineStates is set to
LINEDEVSTATE_ALL, and dwAddressStates is set to LINEADDRESSSTATE_ALL.

LONG
WINAPI
lineSetStatusMessages(
HLINE hLine,
DWORD dwLineStates,
DWORD dwAddressStates
);

2.1.37 lineSetupTransfer
This function is called to create a consultation call in order to perform a supervised transfer. The call that is to be
transferred must exist already. The call may be either active or on hold when this function is called. If the call is active it
will be put on hold by this function. Call lineDial to ring the party that is to be transferred to. Call lineCompleteTransfer to
complete the transfer.

LONG
WINAPI
lineSetupTransfer(
HCALL hCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams
);

2.1.38 lineShutdown
Finish using TAPI line functions. Normally called as your application closes down.

LONG
WINAPI
lineShutdown(
HLINEAPP hLineApp
);

2.1.39 lineSwapHold
This function puts the current active call on hold and retrieves the held call.

LONG
WINAPI
lineSwapHold(
HCALL hActiveCall,
HCALL hHeldCall
);

TAPILink Page 31
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Functions

2.1.40 lineUnhold
This function retrieves a held call. If the line is ringing a third party or has an active call with a third party, when this
function is called, then the ringing/active call will be dropped before the held call is retrieved.

LONG
WINAPI
lineUnhold(
HCALL hCall
);

2.1.41 lineUnpark
This function retrieves a parked call. dwAddressID should be 0 because IP Office lines only have one address.
lpszDestAddress should be the same identifier that was used to park the call (see linePark).

LONG
WINAPI
lineUnpark(
HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress
);

TAPILink Page 32
15-601035 Issue 11f (03 December 2009)IP Office

2.2 TAPI Structures
2.2.1 LINEADDRESSCAPS
This structure is returned by the lineGetAddressCaps function. The following table indicates the values that are returned
for lines that relate to the IP Office TAPI driver.

· Not all members of this structure are listed. For full information on the LINEADDRESSCAPS, see the Microsoft TAPI
documentation.

Member Description / Value

dwLineDeviceID The ID of the line to which this address relates.

dwDevSpecificSize No extra information specific to the device is passed.

dwDevSpecificOffset 0

dwAddressSharing LINEADDRESSSHARING_PRIVATE

dwAddressStates 0

dwCallInfoStates Returns the possible call info states which are:-

LINECALLINFOSTATE_CALLID

LINECALLINFOSTATE_RELATEDCALLID

LINECALLINFOSTATE_NUMOWNERINCR

LINECALLINFOSTATE_NUMOWNEDECR

LINECALLINFOSTATE_NUMMONITORS

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_CALLEDID

LINECALLINFOSTATE_REDIRECTIONID

LINECALLINFOSTATE_REDIRECTINGID

LINECALLINFOSTATE_DISPLAY

LINECALLINFOSTATE_MONITORMODES

LINECALLINFOSTATE_CALLDATA

dwCallerIDFlags Returns the possible caller ID flags which are:-

LINECALLPARTYID_BLOCKED

LINECALLPARTYID_OUTOFAREA

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_UNAVAIL

dwCalledIDFlags Returns the possible called ID flags which are:-

LINECALLPARTYID_BLOCKED

LINECALLPARTYID_OUTOFAREA

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_UNAVAIL

dwConnectedIDFlags Returns the possible connected ID flags which are:-

LINECALLPARTYID_NAME

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_UNAVAIL

dwRedirectionIDFlags Returns the possible redirection ID flags which are:-

LINECALLPARTYID_BLOCKED

LINECALLPARTYID_OUTOFAREA

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_UNAVAIL

dwRedirectingIDFlags Returns the possible redirecting ID flags which are:-

LINECALLPARTYID_BLOCKED

LINECALLPARTYID_OUTOFAREA

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN

LINECALLPARTYID_UNAVAIL

dwCallStates Returns the possible call states which are:-

LINECALLSTATE_IDLE (the call no longer exists)

LINECALLSTATE_OFFERING (a new call has arrived)

LINECALLSTATE_ACCEPTED (the call has been claimed by a application)

LINECALLSTATE_DIALTONE (the caller hears dial tone)

TAPILink Page 33
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Structures

Member Description / Value

LINECALLSTATE_DIALING (the switch is receiving dialling information)

LINECALLSTATE_RINGBACK (the caller hears ringing)

LINECALLSTATE_BUSY (the caller hears the busy signal)

LINECALLSTATE_CONNECTED (the caller has been connected end to end)

LINECALLSTATE_PROCEEDING (dialling has completed but the call has not yet
been connected)

LINECALLSTATE_ONHOLD (the call is on hold)

LINECALLSTATE_CONFERENCED (the call is on a conference)

LINECALLSTATE_ONHOLDPENDCONF (the call is on hold before being
conferenced)

LINECALLSTATE_ONHOLDPENDTRANSFER (the call is on hold before being
transferred)

LINECALLSTATE_DISCONNECTED (The other end has dropped the call)

LINECALLSTATE_UNKNOWN (the call state is unknown)

dwDialToneModes Returns the possible dial tone mode of LINEDIALTONEMODE_UNAVAIL

dwBusyModes Returns the possible busy modes of LINEBUSYMODE_UNAVAIL

dwSpecialInfo Returns the possible special info of LINESPECIALINFO_UNAVAIL

dwDisconnectModes Returns the possible disconnect modes which are:-

LINEDISCONNECTMODE_NORMAL

LINEDISCONNECTMODE_REJECT

LINEDISCONNECTMODE_PICKUP

LINEDISCONNECTMODE_FORWARDED

LINEDISCONNECTMODE_BUSY

LINEDISCONNECTMODE_NOANSWER

LINEDISCONNECTMODE_BADADDRESS

LINEDISCONNECTMODE_UNREACHABLE

LINEDISCONNECTMODE_CONGESTION

LINEDISCONNECTMODE_INCOMPATIBLE

LINEDISCONNECTMODE_UNAVAIL

LINEDISCONNECTMODE_NODIALTONE

LINEDISCONNECTMODE_QOSUNAVAIL

LINEDISCONNECTMODE_BLOCKED

LINEDISCONNECTMODE_DONOTDISTURB

dwMaxNumActiveCalls The maximum number of active calls: 1

dwMaxNumOnHoldCalls The maximum number of calls on hold: 9

dwMaxNumOnHoldPendingCalls The maximum number of calls on hold pending: 9

dwMaxNumConference The maximum number of conference calls: 9

dwMaxNumTransConf The maximum number of transferred conference calls: 9

dwAddrCapFlags Returns the possible address cap flags which are:

LINEADDRCAPFLAGS_FWDNUMRINGS

LINEADDRCAPFLAGS_DIALED

LINEADDRCAPFLAGS_TRANSFERHELD

LINEADDRCAPFLAGS_TRANSFERMAKE

LINEADDRCAPFLAGS_CONFERENCEHELD

LINEADDRCAPFLAGS_CONFERENCEMAKE

LINEADDRCAPFLAGS_FWDSTATUSVALID

dwCallFeatures Returns the possible call features which are:-

LINECALLFEATURE_ADDTOCONF

LINECALLFEATURE_ANSWER

LINECALLFEATURE_BLINDTRANSFER

LINECALLFEATURE_COMPLETETRANSF

LINECALLFEATURE_DIAL

LINECALLFEATURE_DROP

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_HOLD

LINECALLFEATURE_PARK

LINECALLFEATURE_REDIRECT

LINECALLFEATURE_REMOVEFROMCONF

LINECALLFEATURE_SETUPTRANSFER

LINECALLFEATURE_SWAPHOLD

LINECALLFEATURE_UNHOLD

LINECALLFEATURE_SETCALLDATA

TAPILink Page 34
15-601035 Issue 11f (03 December 2009)IP Office

Member Description / Value

dwRemoveFromConfCaps Returns the possible remove from conference caps which is
LINEREMOVEFROMCONF_ANY.

dwRemoveFromConfState Returns the possible remove from conference state which is
LINECALLSTATE_ONHOLD.

dwTransferModes Returns the possible transfer modes which are:

LINETRANSFERMODE_TRANSFER

LINETRANSFERMODE_CONFERENCE

dwParkModes Returns the possible park mode of LINEPARKMODE_DIRECTED.

dwForwardModes Returns the possible forward modes which are:-

LINE FORWARDMODE_UNCOND

LINE FORWARDMODE_UNCONDEXTERNAL

LINE FORWARDMODE_UNCONDSPECIFIC

LINE FORWARDMODE_BUSY

LINE FORWARDMODE_BUSYINTERNAL

LINE FORWARDMODE_BUSYEXTERNAL

LINE FORWARDMODE_BUSYSPECIFIC

LINE FORWARDMODE_NOANSW

LINE FORWARDMODE_NOANSWINTERNAL

LINE FORWARDMODE_NOANSWEXTERNAL

LINE FORWARDMODE_NOANSWSPECIFIC

LINE FORWARDMODE_BUSYNA

LINE FORWARDMODE_BUSYNAINTERNAL

LINE FORWARDMODE_BUSYNAEXTERNAL

LINE FORWARDMODE_BUSYNASPECIFIC

dwMaxForwardEntries The maximum number of forwarded entries: 10

dwMaxSpecificEntries The maximum number of specific entries: 10

dwMinFwdNumRings The minimum forward number of rings: 1

dwMaxFwdNumRings The maximum forward number of ring: 99

dwMaxCallCompletions 0

dwCallCompletionConds 0

dwCallCompletionModes 0

dwNumCompletionMessages 0

dwCompletionMsgTextEntrySize 0

dwCompletionMsgTextSize 0

dwCompletionMsgTextOffset 0

dwAddressFeatures Return the possible address features which are:-

LINEADDRFEATURE_FORWARD

LINEADDRFEATURE_MAKECALL

LINEADDRFEATURE_SETUPCONF

LINEADDRFEATURE_UNPARK

LINEADDRFEATURE_FORWARDFWD

LINEADDRFEATURE_FORWARDDND

dwPredictiveAutoTransferStates 0

dwNumCallTreatments 0

dwCallTreatmentListSize 0

dwCallTreatmentListOffset 0

dwDeviceClassesSize 0

dwDeviceClassesOffset 0

dwMaxCallDataSize The maximum call data size: 127

dwCallFeatures2 0

dwMaxNoAnswerTimeout 0

dwConnectedModes 0

dwOfferingModes 0

dwAvailableMediaModes 0

TAPILink Page 35
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Structures

2.2.2 LINEADDRESSSTATUS
This structure is returned by lineGetAddressStatus.

· Not all members of this structure are listed. For full information on the LINEADDRESSSTATUS, see the Microsoft TAPI
documentation.

Member Description / Value

dwNumInUse; Always 1

dwNumActiveCalls; Reflects the number of active calls.

dwNumOnHoldCalls; Always 0

dwNumOnHoldPendCalls; Always 0

dwAddressFeatures; Indicates the capabilities which are:-

LINEADDRFEATURE_MAKECALL

LINEADDRFEATURE_SETUPCONF

LINEADDRFEATURE_UNPARK

dwNumRingsNoAnswer; 5

dwForwardNumEntries; Always 0

dwForwardSize; / Always 0

dwForwardOffset; Always 0

dwTerminalModesSize; Always 0

dwTerminalModesOffset; Always 0

dwDevSpecificSize; Always 0

TAPILink Page 36
15-601035 Issue 11f (03 December 2009)IP Office

2.2.3 LINECALLINFO
This structure is returned by lineGetCallInfo.

· Not all members of this structure are listed. For full information on the LINECALLINFO, see the Microsoft TAPI
documentation.

Member Description / Value

dwAddressID Always 0

dwBearerMode Returns the possible bearer mode which is:-

LINEBEARERMODE_VOICE

dwRate 64000

dwMediaMode Returns the possible media mode which is :-

LINEMEDIAMODE_INTERACTIVEVOICE

dwAppSpecific Set by application.

dwCallID Call ID

dwCallParamFlags Returns the possible call parameter flags which is:-
LINECALLPARAMFLAGS_IDLE

dwCallStates Returns the possible call states which are:-

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_DIALTONE

LINECALLSTATE_DIALING

LINECALLSTATE_RINGBACK

LINECALLSTATE_BUSY

LINECALLSTATE_CONNECTED

LINECALLSTATE_PROCEEDING

LINECALLSTATE_ONHOLD

LINECALLSTATE_CONFERENCED

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ONHOLDPENDTRANSFER

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_UNKNOWN

dwMonitorMediaModes 0

dwCountryCode 0

dwTrunk 0xFFFFFFFF

dwCommentSize 0

dwCommentOffset 0

dwUserUserInfoSize 0

dwUserUserInfoOffset 0

dwHighLevelCompSize 0

dwHighLevelCompOffset 0

dwLowLevelCompSize 0

dwLowLevelCompOffset 0

dwChargingInfoSize 0

dwChargingInfoOffset 0

dwTerminalModesSize 0

dwTerminalModesOffset 0

dwCallDataOffset 0

dwSendingFlowspecSize 0

dwSendingFlowspecOffset 0

dwReceivingFlowspecSize 0

dwReceivingFlowspecOffset 0

dwCallerIDAddressType 0 – only valid for TAPI Version 3.0 and above

dwCalledIDAddressType 0 – only valid for TAPI Version 3.0 and above

dwConnectedIDAddressType 0 – only valid for TAPI Version 3.0 and above

dwRedirectionIDAddressType 0 – only valid for TAPI Version 3.0 and above

dwRedirectingIDAddressType 0 – only valid for TAPI Version 3.0 and above

TAPILink Page 37
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Structures

2.2.4 LINECALLPARAMS
The following parameters are recognized in the LINECALLPARAMS structure that can be passed to lineMakeCall and
lineSetupTransfer:

· Not all members of this structure are listed. For full information on the LINECALLPARAMS, see the Microsoft TAPI
documentation.

Member Description/Value

dwCallParamFlags Set this to zero for normal use or enter LINEBEARERMODE_VOICE if you wish to
conceal the caller line identifier on the call.

dwCalledPartyOffset Can be used to set the called party identifier.

dwCallingPartyIDOffset Can be used to set the calling party identifier.

TAPILink Page 38
15-601035 Issue 11f (03 December 2009)IP Office

2.2.5 LINECALLSTATUS
This structure is returned by the lineGetCallStatus function.

· Not all members of this structure are listed. For full information on the LINECALLSTATUS, see the Microsoft TAPI
documentation.

Member Description/Value

dwCallState Returns one of the following states:

LINECALLSTATE_IDLE (The call no longer exists)

LINECALLSTATE_OFFERING (a new call has arrived)

LINECALLSTATE_ACCEPTED (the call has been claimed by an application)

LINECALLSTATE_DIALTONE (the caller hears a dial tone)

LINECALLSTATE_DIALING (the switch is receiving dialling information)

LINECALLSTATE_RINGBACK (the caller hears ringing)

LINECALLSTATE_BUSY (the caller hears the busy signal)

LINECALLSTATE_CONNECTED (the call has been connected end to end)

LINECALLSTATE_PROCEEDING (dialling has completed but the call has not yet been
connected)

LINECALLSTATE_ONHOLD (the call is on hold)

LINECALLSTATE_CONFERENCED (the call is on a conference)

LINECALLSTATE_ONHOLDPENDCONF (the call is on hold before being conferenced)

LINECALLSTATE_ONHOLDPENDTRANSFER (the call is on hold before being transferred)

LINECALLSTATE_DISCONNECTED (the other end has dropped the call)

LINECALLSTATE_UNKNOWN (the call state is unknown)

dwCallStateMode Always zero.

dwCallPrivilege The applications privilege for this call.

dwCallFeatures The call features available for the call state indicated by dwCallState. TAPI specifices all
possible features, however, only those that appear in dwCallFeatures in the
LINEADDRESSCAPS structure can be used.

dwDevSpecificSize 0

dwDevSpecificOffset 0

dwCallFeatures2 0

tStateEntryTime Zeros

TAPILink Page 39
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Structures

2.2.6 LINEDEVCAPS
This structure is returned by the lineGetDevCaps function. The comments below indicate the values that will be returned
for lines that relate to the IP Office TAPI driver.

· Not all members of this structure are listed. For full information on the LINEDEVCAPS, see the Microsoft TAPI
documentation.

Member Description / Value

dwProviderInfoSize Indicates the Provider Name, i.e. the name of the TSP.

dwSwitchInfoSize 0

dwPermanentLineID Unique identifier assigned by Windows.

dwLineNameSize Indicates the Line Name.

dwStringFormat Returns the string format which is:-

STRINGFORMAT_ASCII

dwAddressModes Returns the address mode which is:-

LINEADDRESSMODE_ADDRESSID

dwNumAddresses 1

dwBearerModes Returns the bearer modes which are:

LINEBEARERMODE_VOICE

LINEBEARERMODE_SPEECH

dwMaxRate 0

dwMediaModes Returns the media mode which is:

LINEMEDIAMODE_INTERACTIVEVOICE

dwGenerateToneModes Returns the generate tone mode which is:-

LINETONEMODE_BEEP

dwGenerateToneMaxNumFreq 0

dwMonitorToneMaxNumFreq 1

dwMonitorToneMaxNumEntries 1

dwGatherDigitsMinTimeout 0

dwGatherDigitsMaxTimeout 0

dwMedCtlDigitMaxListSize 0

dwMedCtlMediaMaxListSize 0

dwMedCtlToneMaxListSize 0

dwMedCtlCallStateMaxListSize 0

dwDevCapFlags Returns the dev cap flags which are:-

LINEDEVCAPFLAGS_CLOSEDROP

LINEDEVCAPFLAGS_DIALBILLING

LINEDEVCAPFLAGS_DIALQUIET

LINEDEVCAPFLAGS_DIALDUALTONE

dwMaxNumActiveCalls 9

dwAnswerMode Returns the answer mode which is:-

LINEANSWERMODE_NONE

dwRingModes 1

dwLineStates Returns the line state which is:-

LINEDEVSTATE_RINGING

LINEDEVSTATE_CONNECTED

LINEDEVSTATE_DISCONNECTED

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_OUTOFSERVICE

LINEDEVSTATE_OPEN

LINEDEVSTATE_CLOSE

LINEDEVSTATE_REINIT

LINEDEVSTATE_TRANSLATECHNGE

LINEDEVSTATE_REMOVED

dwUUIAcceptSize 0

dwUUIAnswerSize 100

dwUUIMakeCallSize 100

dwUUIDropSize 100

dwUUISendUserUserInfoSize 100

dwUUICallInfoSize User to User call information size: 100

dwNumTerminals 0

TAPILink Page 40
15-601035 Issue 11f (03 December 2009)IP Office

Member Description / Value

dwTerminalCapsSize 0

dwTerminalCapsOffset 0

dwTerminalTextEntrySize 0

dwTerminalTextSize 0

dwTerminalTextOffset 0

dwDevSpecificSize 0

dwDevSpecificOffset 0

dwLineFeatures Returns the line feature which is:

LINEFEATURE_MAKECALL

dwSettableDevStatus 0

dwDeviceClassesSize tapi\line

PermanentLineGuide Only relevant if using TAPI Version 2.2 or higher.

dwAddressTypes Only relevant if using TAPI Version 3.0 or higher.

ProtocolGuide Only relevant if using TAPI Version 3.0 or higher.

dwAvailableTracking Only relevant if using TAPI Version 3.0 or higher.

TAPILink Page 41
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 2.x Reference: TAPI Structures

2.3 TAPI Events (Messages)

LINE_APPNEWCALL
A new call has been created.

LINE_CALLINFO
Information has changed in the LINECALLINFO structure.

LINE_CALLSTATE
The state of the call has changed. See dwCallStates in the LINEADDRESSCAPS structure for the list of states supported.

LINE_LINEDEVSTATE
The line device state has changed. The second parameter could be any one of the following:

· LINEDEVSTATE_DEVSPECIFIC - Devspecific information has changed.

· LINEDEVSTATE_CONNECTED, LINEDEVSTATE_DISCONNECTED - The connected state of the line has changed.

· LINEDEVSTATE_OUTOFSERVICE - The TSP has lost communication with the switch. This line is now out of service.

· LINEDEVSTATE_INSERVICE - The TSP had lost connection to the switch but has now recovered and the line is back
in service.

· LINEDEVSTATE_RINGING - The switch has detected that the caller's phone is ringing.

LINE_DEVSPECIFIC
Notifies the application about device-specific events occurring on a line, address, or call. This message prompts the
application to call lineGetLineDevStatus and analyse the devspecific buffer for changes.

LINE_ADDRESSSTATE
The status of an address has changed on a line that is currently open by the application.

TAPILink Page 43
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3.0 Reference

Chapter 3.

TAPILink Page 44
15-601035 Issue 11f (03 December 2009)IP Office

3. TAPI 3.0 Reference
3.1 TAPI
The TAPI object is created by CoCreateInstance. All other TAPI 3.0 objects are created by TAPI 3.0 itself.

3.1.1 ITTAPI
The ITTAPI interface is the base interface for the TAPI object.

Initialize
This is the first TAPI function that should be called to initialise TAPI.

HRESULT
Initialize();

Shutdown
Shuts down a TAPI session. Normally called as your applications closes down.

HRESULT
Shutdown();

EnumerateAddresses
This method enumerates the addresses that are currently available.

HRESULT
EnumerateAddresses (IEnumAddress **ppEnumAddress);

RegisterCallNotifications
Sets which new call notifications an application will receive. The application must call the method for each address,
indicating media type or types it can handle and specifying the privileges it requests.

HRESULT RegisterCallNotifications(
ITAddress *pAddress,
VARIANT_BOOL fMonitor,
VARIANT_BOOL fOwner,
long lMediaTypes,
long lCallbackInstance,
long *plRegister
);

put_EventFilter
The put_EventFilter method sets the event filter mask

HRESULT
put_EventFilter (long lFilterMask);

TAPILink Page 45
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3.0 Reference: TAPI

3.2 Address
The Address object represents an entity that can make or receive calls.

3.2.1 ITAddress
The interface is the base interface for the Address object.

get_AddressName
Gets the displayable name of the address.

HRESULT
get_AddressName (BSTR *ppName);

get_DialableAddress
The get_DialableAddress method gets the BSTR, which can be used to connect to this address.

HRESULT
get_DialableAddress (
BSTR *pDialableAddress
);

get_ServiceProviderName
The get_ServiceProviderName method gets the name of the Telephony Service Provider (TSP) that supports this
address: for example, Unimdm.tsp for the Unimodem service provider or H323.tsp for the H323 service provider.

HRESULT
get_ServiceProviderName (
BSTR *ppName
);

CreateCall

The CreateCall method creates a new Call object that can be used to make an outgoing call and returns a pointer to the
object's ITBasicCallControl interface.

HRESULT
CreateCall (
BSTR *pDialableAddress,
Long 1AddressType,
Long 1MediaTypes,
ITBasicCallControl **ppCall
);

TAPILink Page 46
15-601035 Issue 11f (03 December 2009)IP Office

3.2.2 IEnumAddress
Provides COM-standard enumeration methods for the ITAddress interface.

Next
The Next method gets the next specified number of elements in the enumeration sequence.

HRESULT
Next(
ULONG celt,
ITAddress **ppElements,
ULONG *pceltFetched
);

3.2.3 ITMediaSupport
The ITMediaSupport interface provides methods that allow an application to discover the media support capabilities for an
Address Object that exposes this interface.

get_MediaTypes
The get_MediaTypes method gets the media type or types supported on the current address.

HRESULT
get_MediaTypes (
long *plMediaTypes
);

3.3 Terminal
Terminal object represents the source or sink of a media stream associated with a call or communications session.

TAPILink Page 47
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3.0 Reference: Terminal

3.4 Call
The Call object represents an address's connection between the local address and one or more other addresses.

3.4.1 ITCallInfo
The ITCallInfo interface gets and sets a variety of information concerning a Call object.

get_Address
The get_Address method gets a pointer to the ITAddress interface of the Address object.

HRESULT
get_Address (
ITAddress **ppAddress
);

get_CallState
The get_CallState method gets a pointer to the current call state, such as CS_IDLE.

HRESULT
get_CallState (
CALL_STATE *pCallState
);

get_CallInfoString
The get_CallInfoString method gets a call information items described by a string, such as the displayable address.

HRESULT
get_CallInfoString (
CALLINFO_STRING CallInfoString,
BSTR *ppCallInfoString
);

SetCallInfoBuffer
Either by accident or design, TAPI 3.0 (Windows 2000) only allows this function on a call that is in the IDLE state. This
has been changed in TAPI 3.1 (Windows XP) which allows call data to be set on calls in the connected state by passing
CIB_CALLDATABUFFER as the CallInfoBuffer parameter.

HRESULT
SetCallInfoBuffer (
CALLINFO_BUFFER CallInfoBuffer,
DWORD dwSize
BYTE* pCallInfoBuffer
);

TAPILink Page 48
15-601035 Issue 11f (03 December 2009)IP Office

3.4.2 ITBasicCallControl
The ITBasicCallControl interface is used by the application to connect, answer, and perform basic telephony operations on
a call object.

Connect
The Connect method attempts to complete the connection of an outgoing call.

HRESULT
Connect(
VARIANT_BOOL fSync
);

Answer
The Answer method answers an incoming call. This method can succeed only if the call state is CS_OFFERING.

HRESULT
Answer();

Disconnect
The Disconnect method disconnects the call. The call state will transition to CS_DISCONNECTED after the method
completes successfully.

HRESULT
Disconnect(
DISCONNECT_CODE code
);

Hold
The Hold method places or removes the call from the hold.

HRESULT
Hold(
VARIANT_BOOL fHold
);

SwapHold
The SwapHold method swaps the call (which is active) with the specified call on hold.

HRESULT
SwapHold(
ITBasicCallControl *pCall
);

ParkDirect
The ParkDirect method parks the call at a specified address.

HRESULT
ParkDirect(
BSTR pParkAddress
);

TAPILink Page 49
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3.0 Reference: Call

Unpark
The Unpark method gets the call from park.

HRESULT
Unpark();

BlindTransfer
The BlindTransfer method performs a blind or single-step transfer of the specified call to the specified destination
address.

HRESULT BlindTransfer(
BSTR pDestAddress
);

Transfer
The Transfer method transfers the current call to the destination address.

HRESULT Transfer(
ITBasicCallControl *pCall,
VARIANT_BOOL fSync
);

Finish
The Finish method is called on a consultation call to finish a conference or a transfer.

HRESULT Finish(
FINISH_MODE finishMode
);

Conference
The Conference method adds a consultation call to the conference in which the current call is a participant.

HRESULT Conference(
ITBasicCallControl *pCall,
VARIANT_BOOL fSync
);

RemoveFromConference
The RemoveFromConference method removes the call from a conference if it is involved in one.

HRESULT RemoveFromConference();

TAPILink Page 50
15-601035 Issue 11f (03 December 2009)IP Office

3.4.3 ITCallStateEvent
The ITCallStateEvent interface contains methods that retrieve the description of call state events.

get_Cause
The get_Cause method gets the cause associated with this event.

HRESULT
get_Cause (
CALL_STATE_EVENT_CAUSE *pCEC
);

get_State
The get_State method gets information on the new call state.

HRESULT
get_State (
CALL_STATE *pCallState
);

get_Call
The get_Call method gets a pointer to the call information interface for the call on which the event has occurred.

HRESULT
get_Call
ITCallInfo **ppCallInfo
);

3.4.4 ITCallNotificationEvent
The ITCallNotificationEvent interface contains methods that retrieve the description of call notification events.

get_Call
The get_Call method returns the ITCallInfo interface on which a call event has occurred.

HRESULT
get_Call
ITCallInfo **ppCall
);

3.4.5 ITCallInfoChangeEvent
The ITCallInfoChangeEvent interface contains methods that retrieve the description of call information change events.

get_Call
The get_Call method returns the ITCallInfo interface on which call information has changed.

HRESULT
get_Call
ITCallInfo **ppCall
);

3.5 Call Hub
The Call Hub object exposes methods that retrieve information concerning participants in a multi-party call. Call Hubs are
not supported by IP Office. Call Hub Events may be received but should be ignored.

TAPILink Page 51
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3 Enumerated Types

Chapter 4.

TAPILink Page 52
15-601035 Issue 11f (03 December 2009)IP Office

4. TAPI 3 Enumerated Types
4.1 CALL_STATE
The CALL_STATE enum is used by the ITCallInfo::get_CallState and ITCallStateEvent::get_State methods.

Member Value Description

CS_IDLE 0 The call has been created, but Connect has not been called yet. A call can never
transition into the idle state.

CS_INPROGRESS 1 Connect has been called, and the service provider is working on making a connection.
This state is valid only on outgoing calls. This message is optional, because a service
provider may have a call transition directly to the connected state.

CS_CONNECTED 2 Call has been connected to the remote end and communication can take place.

CS_DISCONNECTED 3 Call has been disconnected. There are several causes for disconnection. See the table
of valid call state transitions below.

CS_OFFERING 4 A new call has appeared, and is being offered to an application. If the application has
owner privileges on the call, it can either call Answer or Disconnect while the call is in
the offering state.

CS_HOLD 5 The call is in the hold state.

CS_QUEUED 6 The call is queued.

4.2 CALLINFO_STRING
The CALLINFO_STRING enum is used by ITCallInfo methods that set and get call information involving the use of strings.

Member Value Description

CIS_CALLERIDNAME 0 The name of the caller.

CIS_CALLERIDNUMBER 1 The number of the caller.

CIS_CALLEDIDNAME 2 The name of the called location.

CIS_CALLEDIDNUMBER 3 The number of the called location.

CIS_CONNECTEDIDNAME 4 The name of the connected location.

CIS_CONNECTEDIDNUMBER 5 The number of the connected location.

CIS_REDIRECTIONIDNAME 6 The name of the location to which a call has been redirected.

CIS_REDIRECTIONIDNUMBER 7 The number of the location to which a call has been redirected.

CIS_REDIRECTINGIDNAME 8 The name of the location that redirected the call.

CIS_REDIRECTINGIDNUMBER 9 The number of the location that redirected the call.

CIS_CALLEDPARTYFRIENDLYNAME 10 The called party friendly name.

CIS_COMMENT 11 A comment about the call provided by the application that
originated the call.

CIS_DISPLAYABLEADDRESS 12 A displayable version of the called or calling address.

CIS_CALLINGPARTYID 13 The identifier of the calling party.

TAPILink Page 53
15-601035 Issue 11f (03 December 2009)IP Office

TAPI 3 Enumerated Types: CALLINFO_STRING

4.3 DISCONNECT_CODE
The DISCONNECT_CODE enum is used by the ITBasicCallControl::Disconnect method.

Member Value Description

DC_NORMAL 0 The call is being disconnected as part of the normal cycle of the call.

DC_NOANSWER 1 The call is being disconnected because it has not been answered. (For example, an
application may set a certain amount of time for the user to answer the call. If the
user does not answer, the application can call Disconnect with the NOANSWER
code.)

DC_REJECTED 2 The user rejected the offered call.

4.4 CALL_STATE_EVENT_CAUSE
The CALL_STATE_EVENT_CAUSE enum is returned by the ITCallStateEvent::get_Cause method.

Member Value Description

CEC_NONE 0 No call event has occurred.

CEC_DISCONNECT_NORMAL 1 The call was disconnected as part of the normal life
cycle of the call (that is, the call was over, so it was
disconnected).

CEC_DISCONNECT_BUSY 2 An outgoing call failed to connect because the remote
end was busy.

CEC_DISCONNECT_BADADDRESS 3 An outgoing call failed because the destination address
was bad.

CEC_DISCONNECT_NOANSWER 4 An outgoing call failed because the remote end was not
answered.

CEC_DISCONNECT_CANCELLED 5 An outgoing call failed because the caller disconnected.

CEC_DISCONNECT_REJECTED 6 The outgoing call was rejected by the remote end.

CEC_DISCONNECT_FAILED 7 The call failed to connect for some other reason.

TAPILink Page 55
15-601035 Issue 11f (03 December 2009)IP Office

The IP Office Media Service
Provider

Chapter 5.

TAPILink Page 56
15-601035 Issue 11f (03 December 2009)IP Office

5. The IP Office Media Service Provider
The IP Office Media Service Provider serves a dual purpose. It providers media streaming capability which allows a TAPI 3
application to send and receive voice data on calls that are present on specific types of users' lines. It also allows an
application access to device specific functionality of the IP Office.

5.1 Using The MSP
The media service provider interfaces are documented in the MSDN libraries. The DevSpice sample on the SDK CD gives
an example of how to use the MSP for media streaming and device specific functionality. The MSP is available to every
TAPI address that can be viewed in your TAPI 3 application. Media streaming capabilities are only available to addresses
that are specifically named as WAVE users. WAVE users are users with a name that begins with "TAPI:" (Such as
"TAPI:201"). You may create as many WAV users as you wish, but each WAVE user will require a wave driver licence
instance to enable media streaming to that user.

5.2 Using the Device Specific Interfaces
The device specific interfaces are implemented on the Address and Call objects of the MSP. TAPI 3.0 will delegate queries
for interfaces it does not recognise to the MSP. If, therefore, you have a pointer to an ITAddress interface, you can call
QueryInterface to retrieve a pointer to the ITDivert interface (for example). The following code from the DevSpice sample
illustrates:

ITDivert* pDivert = NULL;
if(SUCCEEDED(gpAddress->QueryInterface(IID_ITDIVERT,
(void**)&pDivert)))
{
DWORD dwDivertSettings = 0;
if(FAILED(pDivert-> GetDivertSettings(
&dwDivertSettings)))
{

The interfaces available from the address object are:

· ITACDAgent

· ITDivert

· ITGroup

The interface available from the Call object is:

· ITPlay

Furthermore, the address object acts as a connection point container for IP Office Private events. The connection point
interface is available in the interfaces.h file of the DevSpice sample and is called IPOfficePrivateEvent. Details of these
interfaces are given below.

TAPILink Page 57
15-601035 Issue 11f (03 December 2009)IP Office

The IP Office Media Service Provider: Using the Device Specific Interfaces

5.3 ITACDAgent
IsLoggedIn(void) Returns S_TRUE if the user is logged in and S_FALSE if the user is logged out.

LogOut(void) Logs the user off of this line. The user must have "force logon" set in Manager.

Login(BSTR extn) Logs the user onto the given extension.

CallListen(BSTR extn) Listens to the call present at the given extension. The user must have the Can Intrude
privilege set in Manager.

Intrude(BSTR extn) Conferences the current user in to the call present at the given extension. The user
must have the Can Intrude privilege set in Manager.

SetAccountCode(BSTR extn) Sets the account code for the current call.

5.4 ITGroup
This interface contains functions to take the user in and out of group, as well as to intercept calls that present themselves
at other phones in the group.

PickupAny(void) Equivalent to executing the CallPickupAny shortcode on the user's terminal. See
Manager for details.

PickupGroup(void) Equivalent to executing the CallPickupGroup shortcode on the user's terminal.

PickupExtn(BSTR extn) Equivalent to executing the CallPickupExtn shortcode on the user's extension.

PickupMembers(BSTR extn) Equivalent to executing the CallPickupMembers shortcode on the user's extension.

Enable(BSTR groupextn) Enables the user's membership of the given group. If groupextn is an empty string, the
user will be enabled in all groups that he/she is a member of.

Disable(BSTR groupextn) Disables the user's membership of the given group. If groupextn is an empty string, the
user will be disabled in all groups that he/she is a member of.

TAPILink Page 58
15-601035 Issue 11f (03 December 2009)IP Office

5.5 ITDivert
This interface contains functions for getting and setting the divert flags for the address.

GetDivertAllDestination(BSTR* pDestination) Gets the current Divert All destination and returns the result in the
pDestination value.

SetDivertAllDestination(BSTR dest)

GetDivertSettings(DWORD* pdwDivertSets) This function sets bits in the DWORD pointed to by pdwDivertSets to
indicate which of the divert settings are currently active. The bits are
defined by the IP_OFFICE_DIVERT_SETTINGS enum (described below).

SetForwardAll(VARIANT_BOOL bOn) Toggles the ForwardAll setting for this user.

SetForwardBusy(VARIANT_BOOL bOn) Toggles the ForwardBusy setting for this user.

SetForwardNoAnswer(VARIANT_BOOL bOn) Toggles the ForwardNoAnswer setting for this user.

SetDoNotDisturb(VARIANT_BOOL bOn) Toggles the DND setting for this user.

The IP_OFFICE_DIVERT_SETTINGS enum is defined as follows:

typedef enum
{
IPOFF_FWDALL = 0x01,
IPOFF_FWDBUSY = 0x02,
IPOFF_NOANSWER = 0x04,
IPOFF_DND = 0x08,
IPOFF_DESTINATION = 0x10
} IP_OFFICE_DIVERT_SETTINGS;

Therefore, getting a result of 14 (0xe) from GetDivertSettings implies that the user has ForwardBusy, ForwardNoAnswer
and DoNotDisturb set. The IPOFF_DESTINATION value is not used by GetDivertSettings, only by the
Fire_DivertSettingsChanged function on the IPOfficePrivateEvents interface.

TAPILink Page 59
15-601035 Issue 11f (03 December 2009)IP Office

The IP Office Media Service Provider: ITDivert

5.6 ITPlay
The ITPlay interface is implemented on the MSP Call object. It allows for recording and playing of wave files.

StartPlay(BSTR FileName) FileName should be the complete path to a wave file to play.

StopPlay()

StartRecord(BSTR FileName) FileName should be the complete path to a wave file to record to.

StopRecord()

Playing and recording can be stopped and started at any time on the call. Recording will use only a single file per call
though, and will append to the file if recording is stopped and restarted. It is not advisable to attempt to record and play
at the same time. If this is a requirement, recording and playing can be done by selecting terminals onto the call that
supply audio data from a file, or record audio data to a file. TAPI 3.1 introduces file-streaming terminals to make this
easier.

5.7 IPOfficePrivateEvents
This is a connection point interface that the MSP uses to report events on. See the DevSpice sample on how to register
for, and handle, private events.

OnUserLogin(void) Fired when an agent (a user with 'force logon' set in Manager) logs on.

OnUserLogout(void) Fired when an agent logs out.

OnDivertSettingsChanged(DWORD
dwDivertSettings)

Fired when the user changes one of their divert setting flags (such as Do
Not Disturb or Divert On Busy) or the Divert All destination. The bits in the
dwDivertSettings variable are set using the IP_OFFICE_DIVERT_SETTINGS
enum described above.

OnGroupChanged(DWORD dwGroupCount) Fired when the user enables or disables group membership. The
dwGroupCount value gives the number of groups that this user is an
enabled member of.

OnVoiceMail(DWORD dwNumMessages) This is fired when the number of voicemail messages that the user has
waiting for them changes. The new value is given in the dwNumMessages
parameter.

5.8 Using the Media Streaming Capabilities of the MSP
The IP Office MSP handles media streaming to any wave user. In order to do this, you must select terminals onto the
streams that the MSP exposes for a call. Details on how to do this are given in the MSDN and an example is shown in the
DevSpice sample. It should be noted that IP Office streams are bi-directional, and there is only a single stream per call.
This means that both capture and render terminals are accepted on the same stream (but only one of each).

The MSP encapsulates the functionality of the IP Office wave driver. The IP Office wave driver must be installed on each
machine that wishes to do media streaming to wave users. If you do not wish to do media streaming, and only wish to
monitor wave users using TAPI, you must ensure that the wave driver is not installed, or you will consume wave licence
instances for every wave user line you open.

TAPILink Page 61
15-601035 Issue 11f (03 December 2009)IP Office

Index

Index
C
call hub 50
call state 52

event cause 53

callinfo 52

configuring

driver 9
ip office 11

D
device interfaces 56

disconnect code 53

divert destination 19

F
forward divert settings 20

G
group enable/disable 20

I
installing

drivers 7
licenses 7

intrude 20

L
listen 20

logging off 19
login protocol 19

M
media streaming 59

message waiting lamp 19

MSP 56

P
private events 59

T
TAPI

events messages 41
functions 16

TAPI 2 11

TAPI 3 11

terminal 46

U
using

device interfaces 56

media streaming 59

msp 56

TAPILink Page 63
15-601035 Issue 11f (03 December 2009)IP Office

TAPILink Page 64
15-601035 Issue 11f (03 December 2009)IP Office

Performance figures and data quoted in this document are typical, and must be
specifically confirmed in writing by Avaya before they become applicable to any
particular order or contract. The company reserves the right to make alterations
or amendments to the detailed specifications at its discretion. The publication of

information in this document does not imply freedom from patent or other
protective rights of Avaya or others.

Intellectual property related to this product (including trademarks) and registered
to Lucent Technologies have been transferred or licensed to Avaya.

All trademarks identified by the ® or ™ are registered trademarks or trademarks,
respectively, of Avaya Inc. All other trademarks are the property of their

respective owners.

This document contains proprietary information of Avaya and is not to be
disclosed or used except in accordance with applicable agreements.

Any comments or suggestions regarding this document should be sent to

"wgctechpubs@avaya.com".

© 2009 Avaya Inc. All rights reserved.
Avaya

Unit 1, Sterling Court
15 - 21 Mundells

Welwyn Garden City
Hertfordshire

AL7 1LZ
England.

Tel: +44 (0) 1707 392200
Fax: +44 (0) 1707 376933

Web: http://www.avaya.com/ipoffice/knowledgebase

	IP Office TAPI Link
	Installing the TAPILink and Wave Drivers
	Installing the CTI TAPI Linkpro License and Wave Licenses
	Configuring the TAPI Driver
	Configuring Your IP Office for TAPI
	Communication Loss and Recovery
	TAPI Only Short Codes

	TAPI 2.x Reference
	TAPI Functions
	lineAddToConference
	lineAnswer
	lineBlindTransfer
	lineCompleteTransfer
	lineConfigDialog
	lineClose
	lineDeallocateCall
	lineDevSpecific
	The Login Protocol
	Logging Off
	Divert Destination
	Message Waiting Lamp
	Forward (Divert) Settings
	Group Enable and Disable
	Intrude
	Listen

	lineDial
	lineDrop
	lineGenerateDigits
	lineGenerateTone
	lineGetAddressCaps
	lineGetAddressID
	lineGetAddressStatus
	lineGetAppPriority
	lineGetCallInfo
	lineGetCallStatus
	lineGetDevCaps
	lineGetID
	lineGetLineDevStatus
	lineHandoff
	lineHold
	lineInitializeEx
	lineMakeCall
	lineMonitorDigits
	lineMonitorTone
	lineNegotiateAPIVersion
	lineOpen
	linePark
	lineRedirect
	lineRemoveFromConference
	lineSetAppPriority
	lineSetAppSpecific
	lineSetCallPrivilege
	lineSetStatusMessages
	lineSetupTransfer
	lineShutdown
	lineSwapHold
	lineUnhold
	lineUnpark

	TAPI Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINECALLINFO
	LINECALLPARAMS
	LINECALLSTATUS
	LINEDEVCAPS

	TAPI Events (Messages)

	TAPI 3.0 Reference
	TAPI
	ITTAPI

	Address
	ITAddress
	IEnumAddress
	ITMediaSupport

	Terminal
	Call
	ITCallInfo
	ITBasicCallControl
	ITCallStateEvent
	ITCallNotificationEvent
	ITCallInfoChangeEvent

	Call Hub

	TAPI 3 Enumerated Types
	CALL_STATE
	CALLINFO_STRING
	DISCONNECT_CODE
	CALL_STATE_EVENT_CAUSE

	The IP Office Media Service Provider
	Using The MSP
	Using the Device Specific Interfaces
	ITACDAgent
	ITGroup
	ITDivert
	ITPlay
	IPOfficePrivateEvents
	Using the Media Streaming Capabilities of the MSP

